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1. Supplementary details for Figure 1: 
 

                  
Fig. 1. (left) Four wave mixing efficiency (density plot) against frequency, showing integration bounds for self-phase 

modulation like terms (orange) cross-phase modulation like terms (green) and four wave mixing (black), (center) 

relative fraction of nonlinear noise from phase modulation-like terms as a function of WDM signal bandwidth for 10 

(green) to 64 (purple) GHz channel bandwidths (right) illustration of the generation of nonlinear mixing products. 

Figure 1 (left and center) present integration of the conventional FWM efficiency according to the approach in [5]. 

For figure 1 left, the integration limits for compensation of cross phase modulation are given by: 

 
Where f1 is relative frequency 1, f2 relative frequency 2 and R the symbol rate or WDM signal bandwidth. Figure 1 

(centre) is calculated by diving integration of the FWM efficiency between f2
-(R) and f2

+(R) by the integration of the 

FWM efficiency between f2
-(N.R) and f2

+(N.R) where N is the number of channels considered. In this example the 

integration was carried out assuming an 80km span of standard single-mode fiber.  

 

Coordinates of the points shown in Fig 1 (centre) are (to two significant figures): 

 

10 GHz: {{0.02, 0.53}, {0.03, 0.42}, {0.04, 0.37}, {0.05, 0.36}, {0.06, 0.35}, {0.07, 0.35}, {0.09, 0.35}, {0.1, 0.35}, {0.1, 0.35}} 

20 GHz: {{0.02, 1.0}, {0.04, 0.60}, {0.06, 0.54}, {0.08, 0.51}, {0.1, 0.50}, {0.2, 0.48}, {0.3, 0.48}, {0.3, 0.48}, {0.16, 0.48}} 

33 GHz: {{0.033, 1.}, {0.066, 0.70}, {0.1, 0.64}, {0.13, 0.61}, {0.17, 0.60}, {0.2, 0.59}, {0.27, 0.57}, {0.33, 0.57}, {0.4, 0.56}, {0.5, 0.56}, 

{0.6, 0.55}, {0.77, 0.55}, {1., 0.55}} 

64 GHz: {{0.064, 1.0}, {0.13, 0.81}, {0.26, 0.73}, {0.96, 0.65}, {0.96, 0.65}, {0.19, 0.76}, {0.38, 0.69}, {0.58, 0.67}} 

 

Figure 1 right illustrates the length scaling rules reported in [1]. 

 

 

 

 

 

 

    



 

2. Supplementary details for Figure 2: 
 

       

Fig. 2. Theoretical predictions of nonlinear compensation benefits showing (left) signal transmission limited 

by: black – inter signal nonlinearity, red – PNA, blue – second order PNA, green – all orders of PNA. 

(center) potential benefit of ideal nonlinearity compensation in a 128-channel system with a SNR before NLC 

of 15dB, and (right) potential SNR of 32 (purple), 64 (blue), 128 (green) and 256 (red) channel systems as a 

function of compensator bandwidth for a starting SNR of 9 (bottom) and 15 (top) dB. 

 

Figure 2 is plotted for a generic system with 20 spans, and arbitrary nonlinear coefficient and an ASE noise spectral 

density selected to give a 15dB SNR without any compensation of nonlinear effects. Equations governing the curves 

are taken from [1], except for the “all-order” PNA, where the length scaling is adapted from [7]. For Figure 2 

(centre) and Figure 2 (right) the proportion of residual inter-signal nonlinearity is simplifies to  

 
Where RC is the effective bandwidth of the nonlinearity compensation, and B0 a parameter reflecting the bandwidth 

of the first lobe of the FWM efficiency [5].  
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4. References for Figure 3. 
 

        
Fig. 3: Progress in digital (blue) and OPC-based (red) nonlinearity compensation. 

For figure 3, results reported in each paper were converted to an equivalent SNR using the approach proposed in [1], 

except results reporting mutual information, where the SNR was taken assuming that the mutual information and 

SNR were related by Shannon’s capacity formula. 
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